激光与光电子学进展

基于二维面形加权叠加的扩展 LED 光源 自由曲面透镜设计

张文裕^{1,2},苏宙平^{1,2*} ¹江南大学理学院,江苏无锡 214122; ²江苏省轻工光电工程技术研究中心,江苏无锡 214122

摘要提出了一种适用于二维面形加权叠加的方法,该方法可以针对扩展LED光源设计自由曲面对光分布进行调控。在光源面上取5个采样点作为5个点光源产生5个自由曲面,对每个自由曲面数据点分别乘以权重因子,对加权之后的自由曲面进行叠加,叠加后的自由曲面作为初始轮廓。使用粒子群算法对权重因子做进一步优化,获得最优权重因子,使用最优权重因子对5个自由曲面进行加权叠加。使用叠加之后最优的自由曲面构成的透镜对扩展LED光源进行光分布调控,模拟结果表明,使用该方法可使目标面的照度均匀度达到75%,比初始透镜在目标面产生的照度均匀度提高了15%。该方法具有优化变量少、面形连续性好、收敛速度快等优点。 关键词 光学设计与制造;发光二极管;扩展光源;自由曲面;面形加权叠加;粒子群算法 中图分类号 O435 文献标志码 A DOI: 10.3788/LOP202259.1122003

Design of Free-Form Surface Lens of Extended LED Light Source Based on Two-Dimensional Surface Shape Weighted Superposition

Zhang Wenyu^{1,2}, Su Zhouping^{1,2*}

¹School of Science, Jiangnan University, Wuxi 214122, Jiangsu, China; ²Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, Jiangsu, China

Abstract A method that can be applied to two-dimensional surface shape weighted superposition is proposed, which can control the light distribution by designing free-form surfaces for extended LED light sources. Five sampling points are taken on the light source surface, which are used as five point light sources to generate five free-form surfaces, and each free-form surface data point is multiplied by a weight factor. The weighted free-form surfaces are superimposed, and the superimposed free-form surfaces are used as the initial outline. The particle swarm algorithm is used to further optimize the weight factor to obtain the optimal weight factor, and the five free-form surfaces are weighted and superposed using the optimal weight factor. The light distribution of the extended LED light source is adjusted by using the superimposed optimal free-form surface lens. The simulation result shows that this method enables the uniformity of the illuminance of the target surface to reach 75%, which is 15% higher than that generated by the initial lens on the target surface. This method has the advantages of fewer optimization variables, good surface continuity, and fast convergence speed.

Key words optical design and fabrication; LED; extended light source; free-form surface; surface shape weighted superposition; particle swarm algorithm

收稿日期: 2021-07-04; 修回日期: 2021-07-19; 录用日期: 2021-07-22 基金项目:上海市全固态激光器与应用技术重点实验室开放课题(2012ADL03) 通信作者: *zpsu_optics@163.com

1引言

发光二极管(LED)正逐渐成为一种主要的光 源,被广泛应用于各种领域的照明。然而大部分的 LED 光源光强分布遵循朗伯分布,直接照明目标 面,将导致目标面上照度分布不均匀,从而影响到 很多照明场景的使用,如室内照明或阅读灯的照 明,因此针对LED光源设计二次透镜进行光分布调 控非常必要^[1-2]。当LED光源尺寸相对于透镜尺寸 比较小的时候,LED光源可以被看作为点光源,针 对LED点光源设计自由曲面透镜在目标面产生均 匀的照度分布,技术上已经变得非常成熟[3]。随着 大功率 LED 应用越来越多, LED 光源的尺寸也越 来越大,针对扩展LED光源设计自由曲面透镜成为 一个研究热点^[4-5]。常用的针对扩展 LED 光源设计 自由曲面的方法有:多参数优化方法[6]、同步多个面 方法(SMS)^[7]、反馈优化算法^[8]等。多参数优化方 法通常是将自由曲面拟合为一个多项式,优化曲面 的系数或者是优化自由曲面上多个采样点的坐标, 这种方法优化变量比较多、收敛速度慢,可能导致 面形不连续。Benitez等^[4]提出了同步多个曲面设计 方法,为了取得比较好的效果需要耦合的波前数量 比较多。反馈优化算法是一种常用的针对扩展光 源设计自由曲面的方法,通过比较目标面的实际照 度值与预期的照度值,不断调整目标面网格面积或 光源通量的划分。Wang等^[9]使用面形轮廓叠加法, 在光源面上取多个发光点,产生对应的透镜轮廓, 将这些面形轮廓叠加产生了自由曲面透镜轮廓。 吴涛等[10]提出了加权叠加的算法,在光源面上选取 几个采样点,分别得到了几个透镜轮廓,对每个透 镜轮廓进行加权叠加得到最后的自由曲面轮廓,通 讨优化权重因子可以使目标面产生均匀的照度分 布,然而该文献中提出的加权算法是对旋转对称自 由曲面进行设计,这种加权叠加只需要针对曲线进 行简单叠加,实现起来比较容易。本文设计的是非 旋转对称自由曲面,加权叠加是针对曲面的叠加,曲 面的叠加要比曲线叠加更复杂,特别是要求解射线 与自由曲面的交点,需要对曲面进行三角网格化及 采用射线与曲面快速求交点算法,另外非旋转对称 自由曲面引入的权重因子数量也会增加,优化复杂 程度也有所提高。本文提出的设计方法具有优化变 量少、收敛速度快、面形的连续性好等优点,使用这 种方法设计的自由曲面透镜,与初始自由曲面透镜 模型相比,目标面的照度均匀度提高了约15%。

2 设计与优化原理

一个典型的LED照明系统示意图如图1所示, LED光源经过一个自由曲面透镜在一个矩形目标 面产生均匀的照度分布。自由曲面透镜内表面为 球面,外表面是一个自由曲面也即待设计的面。

图 1 LED 照明系统示意图 Fig. 1 Diagram of LED illumination system

2.1 构造非旋转均匀光斑透镜初始模型

如图2所示,加权叠加的算法主要包括以下 几个过程:

图2 加权叠加算法构建自由曲面示意图

Fig. 2 Schematic diagram of constructing free-form surface by weighted superposition algorithm

第 59 卷 第 11 期/2022 年 6 月/激光与光电子学进展

1) 在光源面上采样发光点

假设LED光源为边长*a*(mm)×*b*(mm)的矩形 面光源,在光源面上等间距取5个发光点,如图2(a) 所示,这5个发光点可以看作是5个点光源。

2) 基于点光源设计自由曲面

基于文献[2]的方法,针对中心发光点设计自 由曲面在目标面上产生均匀的照度分布,设计好的 自由曲面如图 2(b)所示,自由曲面上数据点坐标为 (x_i, y_i, z_i)。

3) 复制并平移自由曲面

复制(*n*-1)个自由曲面,并将这些自由曲面平移,每个自由曲面的中心对应1个光源采样点,如图2(c)所示,曲面中心点如图3所示;平移之后自由曲面的数据点坐标为(*x_i*±*a_n*,*y_i*±*b_n*,*z_i*),*a_n*为第*n*个离散光源点的*x*坐标,*b_n*为第*n*个离散光源点的*y*坐标。

Fig. 3 Center coordinate points of surface after translation

将每个自由曲面上的数据点分别乘以一个权 重因子 ω ,如图2(d)所示;第n个自由曲面上数据点 坐标为 $P[\omega_i(x_i - a_n), \omega_i(y_i - b_n), \omega_i z_i]$ 。

4) 将自由曲面三角网格化

将加权后的5组自由曲面数据点采取 Delaunay 三角网格剖分的方法进行三角网格化^[11],并求射线 与多个自由曲面的交点,如图2(e)所示。

5) 射线与自由曲面交点计算

为了计算加权之后的自由曲面采样点的坐标,

引进了从光源中心点出射的辅助射线,射线与n个 自由曲面相交然后叠加。这里先讨论求解射线与 单个自由曲面交点的方法。通过将自由曲面进行 三角网格剖分,直接求解射线与三角网格的交点, 采取的方法为Möller-Trumbore算法^[12],思路如下:

a)将光线用参数方程表示为

$$\boldsymbol{O} + \boldsymbol{D}t, \tag{1}$$

式中:**O**为射线的起点;**D**为射线的方向;t为常数。

b) 如图 4(a)所示,三角网格的三个顶点分别为 *V*₀、*V*₁、*V*₂,*p* 是三角网格中任意一点,将三角网格面 写成参数方程

 $T(u, v) = (1 - u - v)V_0 + uV_1 + vV_2$, (2) 式中: u, v分别是 V_0 和 V_1 的权重; 1 - u - v是 V_2 的权重。交点位于三角形内的条件为 $u \ge 0, v \ge 0$ 以及 $u + v \le 1$, 否则位于三角网格面外部的平 面上。

c) 求射线与三角网格面交点如图 4(b)所示,将 式(1)代入式(2)得

$$\boldsymbol{O} + \boldsymbol{D}t = (1 - u - v)\boldsymbol{V}_0 + u\boldsymbol{V}_1 + v\boldsymbol{V}_2, \quad (3)$$
整理可得

$$\begin{bmatrix} -\boldsymbol{D}, \boldsymbol{V}_1 - \boldsymbol{V}_0, \boldsymbol{V}_2 - \boldsymbol{V}_0 \end{bmatrix} \begin{vmatrix} t \\ u \\ v \end{vmatrix} = \boldsymbol{O} - \boldsymbol{V}_{00} \qquad (4)$$

设
$$E_1 = V_1 - V_0, E_2 = V_2 - V_0, T = O - V_0, 则$$

$$\begin{bmatrix} t \\ u \\ v \end{bmatrix} = \frac{1}{(D \times E_2) \times E_1} \begin{bmatrix} (T \times E_1) \cdot E_2 \\ (D \times E_2) \cdot T \\ (T \times E_1) \cdot D \end{bmatrix}, \quad (5)$$

只要获得了t, u, v,就可以计算出交点T(u, v)。

6) 采样点的叠加

图 5(a)为辅助射线与自由曲面的交点示意图, 从光源中心点出射的一条射线,与5个自由曲面有 5 个 交 点,坐 标 为 $[x_1(i), y_1(i), z_1(i)]; [x_2(i), y_2(i), z_2(i)]; [x_3(i), y_3(i), z_3(i)]; [x_4(i), y_4(i), z_4(i)]; [x_5(i), y_5(i), z_5(i)]; 5个坐标点加权叠加之$ 后得到一个新的数据点,其坐标可表示为

图4 射线与三角网格交点示意图。(a)三角形网格面;(b)直线与三角形面的交点

Fig. 4 Diagram of intersection of ray and triangular mesh. (a) Triangle mesh surface; (b) intersection of line and triangle surface

图 5 射线与 5 个自由曲面的交点示意图。(a)单一射线与 5 个面的交点;(b) k 条射线与 5 个面的交点 Fig. 5 Diagram of intersection of rays and five free-form surfaces. (a) Single ray intersecting with five free-form surfaces; (b) k rays intersecting with five free-form surfaces

$w_1 \ w_2 \ w_3 \ w_4 \ v_5$	$ \begin{array}{c} x_{1}(i) & y_{1}(i) \\ x_{2}(i) & y_{2}(i) \\ x_{3}(i) & y_{3}(i) \\ x_{4}(i) & y_{4}(i) \\ x_{6}(i) & y_{1}(i) \end{array} $	$egin{array}{llllllllllllllllllllllllllllllllllll$	(6)
	$x_5(i)$ $y_5(i)$	$z_5(i)$	
-	$[w_1 \ w_2 \ w_3 \ w_4 \ v_5]$	$\begin{bmatrix} w_1 & w_2 & w_3 & w_4 & w_5 \end{bmatrix} \begin{bmatrix} x_1(i) & y_1(i) \\ x_2(i) & y_2(i) \\ x_3(i) & y_3(i) \\ x_4(i) & y_4(i) \\ x_5(i) & y_5(i) \end{bmatrix}$	$egin{aligned} & \left[w_1 \ w_2 \ w_3 \ w_4 \ w_5 ight] egin{aligned} & \left[x_1(i) \ y_1(i) \ z_1(i) \ z_1(i) \ z_1(i) \ z_2(i) \ z_2(i) \ z_2(i) \ z_2(i) \ z_3(i) \ z_3(i) \ z_3(i) \ z_3(i) \ z_4(i) \ z_4(i) \ z_5(i) \ y_5(i) \ z_5(i) \ z_5(i) \ \end{bmatrix} \end{aligned}$

式中, w_1, w_2, w_3, w_4, w_5 为权重变量, $w_1 + w_2 + w_3 + w_4 + w_5 = 1$ 。如果选取从光源中心点出射的k条射线,可以分别与自由曲面相交,如图 5(b)所示,这样经过叠加之后可以形成k个采样点,这些叠加产生的采样点可以构成自由曲面,如图 2(f)所示。可以看出每组w值的选取不同,得到的叠加采样点也不一样,后续可对w进行优化求出最 佳w值。

多条辅助射线与自由曲面叠加之后形成的自 由曲面数据点如图6所示。

2.2 基于粒子群优化算法的权重系数优化

基于加权叠加的算法可以获得自由曲面上的 采样点,这些采样点构成的面形并不是最佳的面

 $\langle ... \rangle$

图6 叠加后自由曲面数据点

形,还可以做进一步的优化。从式(6)可以看出,每 一个叠加的数据点坐标都与权重系数有关,以曲面 上的第*i*个点为例,根据式(6),当权重因子改变后, 采样点的坐标也发生了变化:

$$\begin{cases} x'(i) = w_1' x_1(i) + w_2' x_2(i) + w_3' x_3(i) + w_4' x_4(i) + w_5' x_5(i) \\ y'(i) = w_1' y_1(i) + w_2' y_2(i) + w_3' y_3(i) + w_4' y_4(i) + w_5' y_5(i), \\ z'(i) = w_1' z_1(i) + w_2' z_2(i) + w_3' z_3(i) + w_4' z_4(i) + w_5' z_5(i) \end{cases}$$
(7)

式中,w₁'、w₂'、w₃'、w₄'、w₅'为改变后的权重因子。 可以看出权重因子决定了自由曲面的面形,而自由 曲面的面形又会影响目标面上的照度均匀度。因 此可以构建一个照度均匀度的评价函数为(该函数 的自变量为权重因子)

 $F(w_1, w_2, w_3, w_4, w_5) = 1 - U,$ (8) 式中, $U = \bar{E} / E_{\text{max}}$ 为照度均匀度, $\bar{E} \cdot E_{\text{max}}$ 分别为目 标面照度的平均值和最大值。从式(8)可以看出, 评价函数值越小,均匀度 $U = \bar{E}/E_{max}$ 越高。因此通 过寻找最佳的权重因子,可使评价函数达到最小, 从而使目标面照度均匀性最好。为了寻找评价函 数的最小值,使用了一种全局优化算法:粒子群优 化(PSO)算法^[13]。

2.3 优化算法设计

基于点光源设计自由曲面,给定一组初始的权 重因子,追迹光线,获得目标面照度均匀度,基于 PSO算法,改变权重因子,重新追迹光线,计算目标 面照度均匀度,如果照度均匀度变得更好了,保留 这组新的权重因子;否则保留原来的权重因子。基 于 PSO 算法,不断重复上述过程,直到寻找到评价 函数的最小值,这种情况下对应的权重因子就是最 优权重因子。该优化算法流程图如图7所示。

图 7 优化算法流程图 Fig. 7 Flow chart of optimization algorithm

3 设计实例

为了验证算法的有效性,设计了一个自由曲面 透镜,如图8所示,透镜内表面为球面,外表面为自 由曲面,具体设计参数与初始条件如表1所示。

本案例中在LED光源面上等距离取了5个采

样点作为5个点光源,如表1所示。使用PSO算法 对5个权重因子进行200次迭代达到评价函数收敛 最小值,迭代之后的最佳权重因子如表2所示。使 用5个权重因子乘以每个光源点对应的自由曲面数 据点坐标,叠加之后形成了最后的自由曲面透镜, 如图9所示。

Fig. 8 Schematic diagram of LED illumination system with key parameters

图 10 为使用不同自由曲面透镜所产生的照度 分布图。当使用 LED 点光源设计好的自由曲面透 镜,将扩展光源替换点光源后,目标面的照度分布 如图 10(a)所示,照度分布均匀度约为60%,可以看

出照度分布极不均匀,出现边缘部分突出而中间部 分塌陷,与理想中的均匀照明有较大差距。使用初 始的权重因子直接叠加产生的自由曲面透镜,对 LED光源进行调控之后的照度分布如图 10(c)所

研究论文

第 59 卷 第 11 期/2022 年 6 月/激光与光电子学进展

Table 1 Design pa	Table	
Parameter	Value	Param
LED size	$5\mathrm{mm} imes 5\mathrm{mm}$	1 aran
Inner sphere radius /mm	10	w
Lens material	PMMA	w
Distance of LED from	0000	W
target plane /mm	8000	W.
Target plane size	$30000 \text{ mm} \times 10000 \text{ mm}$	
Particle number of population N	50	
Optimization cycles T	200	
Range of weight factors	[0.1,0.4]	
Number of sample points on LED	5	
Distribution of sample	• •	
points on LED	• •	

示。当使用 PSO 算法对权重因子进行优化,迭代 200次后达到目标函数最小值,目标面照度分布如 图 10(e)所示,照度分布均匀度达到了75%,提升了

表1 设计参数

表 2 优化前后的权重因子 ble 2 Weight factors before and after optimization

Denementar	Initial weight	Optimized weight
Parameter	factor	factor
w_1	0.2500000	0.2462467
${\mathfrak W}_2$	0.2500000	0.2024465
${\mathfrak W}_3$	0.2500000	0.1262445
${\cal W}_4$	0.2500000	0.1915454
w_5	0.2500000	0.2337455

图 10 优化前后目标面照度分布。(a)优化前照度分布;(b)优化前照度等高线分布;(c)初始权重照度分布;(d)初始权重照度 等高线分布;(e)优化后照度分布;(f)优化后照度等高线分布

Fig. 10 Distributions of target surface illuminance before and after optimization. (a) Distribution of illuminance before optimization; (b) contour distribution of illuminance before optimization; (c) distribution of initial weight illuminance;
(d) contour distribution of initial weight illuminance; (e) distribution of illuminance after optimization; (f) contour distribution of illuminance after optimization

研究论文

约15%,光通量的利用率也可以达到78%,比原先 提高3%。当使用更多的加权面如9个面进行加权 叠加,也就是在LED光源面上取9个采样发光点, 目标面上的照度分布均匀度与5个采样点进行加权 相比,不会有实质性的变化。本文在优化权重因子 时使用的是全局优化算法,初始权重因子的选择对 最终的优化结果几乎没有影响,但是会对迭代的次 数产生一定影响。为证实这一点,随机产生了9组 权重因子作为初始权重因子分别进行优化,并与前 面1组等权重因子作为初始权重因子的优化情况进行分析对比,如表3所示。

可以看出,这种基于面形加权叠加的算法,只 需要优化权重因子,而在优化权重因子的时候,使 用的是全局优化算法,初始权重因子的选择对最终 的优化均匀度几乎没有影响,还可以保证叠加之后 面形的连续性,并且在优化过程中只需要优化4个 权重因子(5个权重因子之和为1,实质就是4个变 量),优化变量少,收敛速度比较快。

表3 不同初始权重因子优化结果

	Table 3	Optimization	results of	different	initial	weight	factors
--	---------	--------------	------------	-----------	---------	--------	---------

Initial weighting factor	Weight factor after optimization	Uniformity	Number of iterations
(0.2500,0.2500,0.2500,0.2500,0.2500)	(0.2462,0.2024,0.1262,0.1915,0.2337)	75.0%	200
(0.2630,0.1365,0.2207,0.1626,0.2170)	(0.2458,0.2054,0.1202,0.1895,0.2391)	75.1%	230
(0.4412,0.0459,0.0643,0.2385,0.2102)	(0.2461,0.2025,0.1260,0.1917,0.2334)	74.8%	186
(0.3319,0.3635,0.0617,0.2359,0.0051)	(0.2441,0.2015,0.1273,0.1955,0.2316)	74.8%	176
(0.3027,0.2041,0.0732,0.2106,0.2094)	(0.2443,0.2032,0.1243,0.1926,0.2356)	75.2%	275
(0.2902,0.1236,0.2229,0.1095,0.2538)	(0.2451,0.2015,0.1233,0.1896,0.2375)	74.9%	196
(0.1255,0.2120,0.2509,0.1604,0.2512)	(0.2476,0.2066,0.1242,0.1902,0.2314)	75.1%	234
(0.2799,0.0994,0.1129,0.2980,0.2099)	(0.2422,0.2017,0.1263,0.1936,0.2362)	75.0%	178
(0.3146,0.2003,0.1961,0.0758,0.2132)	(0.2453,0.2085,0.1257,0.1899,0.2306)	74.9%	168
(0.3246,0.1902,0.1763,0.0918,0.2143)	(0.2442,0.2032,0.1241,0.1901,0.2384)	74.8%	180

4 结 论

使用二维面形加权叠加的算法,针对扩展LED 光源设计了自由曲面透镜,使用该透镜在目标面产 生的照度分布均匀度与初始自由曲面透镜相比提 高了15%。在面形叠加过程中需要求解辅助射线 与自由曲面的交点,使用了Delaunay剖分的方法对 自由曲面进行三角网格化,并采用Möller-Trumbore 方法求解射线与自由曲面上的三角网格的交点。 二维面形加权叠加的算法只需要通过优化权重因 子就可以实现对自由曲面的优化,具有优化变量 少、面形连续性好、收敛速度快等优点,而且初始权 重因子的选择对最终优化结果几乎不会有影响。 在今后的工作中将进一步探索对LED面光源使用 非等间距的采样是否会对结果有影响。

参考文献

- Ding Y, Liu X, Zheng Z R, et al. Freeform LED lens for uniform illumination[J]. Optics Express, 2008, 16(17): 12958-12966.
- [2] Wang K, Liu S, Chen F, et al. Freeform LED lens for rectangularly prescribed illumination[J]. Journal of

Optics A: Pure and Applied Optics, 2009, 11(10): 105501.

- [3] 王恺.大功率LED封装与应用的自由曲面光学研究
 [D]. 武汉:华中科技大学, 2011: 22-36.
 Wang K. Freeform optics for high power LED packages and applications[D]. Wuhan: Huazhong University of Science and Technology, 2011: 22-36.
- [4] Benítez P, Miňano J C. The future of illumination design[J]. Optics and Photonics News, 2007, 18(5): 20-25.
- [5] 曾翌,赵会富,段文举.基于双自由曲面高距高比照 度均匀的光学系统设计[J].光学学报,2020,40(24): 2422001.

Zeng Y, Zhao H F, Duan W J. Design of optical system with illumination uniform and high distanceheight ratio based on double freeform-surface[J]. Acta Optica Sinica, 2020, 40(24): 2422001.

- [6] Gimenez-Benitez P, Miñano J C, Blen J, et al. Simultaneous multiple surface optical design method in three dimensions[J]. Optical Engineering, 2004, 43(7): 1489-1502.
- [7] Dross O, Benítez P, Miñano J C, et al. Review of SMS design methods and real-world applications[J].
 Proceedings of SPIE, 2004, 5529: 35-47.

第 59 卷 第 11 期/2022 年 6 月/激光与光电子学进展

- [8] Li Z T, Yu S D, Lin L W, et al. Energy feedback freeform lenses for uniform illumination of extended light source LEDs[J]. Applied Optics, 2016, 55(36): 10375-10381.
- [9] Wang K, Han Y J, Li H T, et al. Overlapping-based optical freeform surface construction for extended lighting source[J]. Optics Express, 2013, 21(17): 19750-19761.
- [10] 吴涛,苏宙平.基于加权叠加法的扩展LED光源自由曲面透镜设计[J].激光与光电子学进展,2018,55 (12):122202.

Wu T, Su Z P. Design of free-form lens for extended LED source based on weighted overlap algorithm[J]. Laser & Optoelectronics Progress, 2018, 55(12): 122202.

- [11] 管镭,孟宪琦,魏生民.Delaunay三角网格化算法及 实现[J].西北工业大学学报,1996,14(1):138-142.
 Guan L, Meng X Q, Wei S M. An improved Delaunay triangulation algorithm for multiplyconnected domain[J]. Journal of Northwestern Polytechnical University, 1996, 14(1):138-142.
- [12] Möller T, FastTrumbore B., minimum storage raytriangle intersection[J]. Journal of Graphics Tools, 1997, 2(1): 21-28.
- [13] 史峰, 王辉, 郁磊. MATLAB智能算法 30个案例分析[M]. 北京:北京航空航天大学出版社, 2011.
 Shi F, Wang H, Yu L. Analysis of 30 cases of MATLAB intelligent algorithm[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2011.